Security Games in Online Advertising: Can Ads Help Secure the Web?

Nevena Vratonjic Maxim Raya Jean-Pierre Hubaux

David C. Parkes

June 2010, WEIS'10

Internet Economy

- Online Advertising:
 - The main Internet business model
 - Revenue in 2009 in the US is \$22.4 billion
 - Sponsors free services and applications

• What happens if one meddles with it?

Online Advertising System

Role of ISPs

- Traditional role:
 - Provide Internet access to end users
 - Forward the communication in compliance with Network Neutrality Policy
- New requirements
 - Data retention legislations
 - Increase costs and require investing into new technologies
- How will ISPs obtain a return on investment?

Recently Reported Cases

- Growing number of <u>ISPs injecting own content</u> into web pages [1][2]
- Third party ad companies <u>partnering with ISPs</u>
 - e.g., Adzilla, Phorm, NebuAd

[1] C. Reis et al. Detecting In-flight Page Changes with Web Tripwires, NSDI 2008.
[2] B. April, F. Hacquebord and R. Link, A Cybercrime Hub, August 2009.

ISPs in Online Advertising Business

- Non-cooperative ISP diverts part of online ad revenue by performing attacks on online advertising
 - E.g., injecting ads into the content of web pages on-the-fly
- **Cooperative ISP** collects and provides information about users' online behavior with the goal of improving ad targeting
 - Generates revenue by charging for users' profiles

Problem Statement

- Study the effect of strategic ISPs on the Web
 - Model the behavior of ISPs and economic incentives in online advertising systems
 - Analyze mutually dependent actions of ISPs and Ad Servers (AS)

Related Work

- Online advertising fraud
 - The best strategy for ad networks is to fight click fraud [1]
- Incentives to increase the security of the Web
 Users' choice: Investment in security or insurance mechanisms [2]
- Our model introduces a new strategic player the ISP
- B. Mungamuru, S. Weis, H. Garcia-Molina, Should Ad Networks Bother Fighting Click Fraud? (Yes, they should.), Stanford Technical Report, July 2008.
 J. Grossklags, N. Christin, J. Chuang, Secure or insure?: a game-theoretic analysis of information security games, WWW 2008.

Outline

- I. Strategic behavior of ISPs
- II. Game-theoretic Model
- III. Analysis and Results

Nominal Mode

- ISP: Abstain (A) forwards users' communication
- AS: Abstain (A) serves online ads upon users' requests

Cooperative Mode

• ISP: Cooperate (C) – shares the collected users' profiles to help AS improve ad targeting

• AS: Cooperate (C) – shares a part of its revenue with the ISP

Non-Cooperative Mode

- ISP: Divert (D) diverts a fraction of the ad revenue from the AS
- AS: Abstain (A) serves online ads upon users' requests Secure (S) – secures the website

Non-Cooperative Mode

- ISP: Divert (D) diverts a fraction of the ad revenue from the AS
- AS: Secure (S) secures the website

Game-theoretic Model

- Behavior of ISPs:
 - Abstain (A) forwards users' communication
 - **Cooperate (C)** shares the collected users' private info to help improve ad targeting
 - **Divert (D)** diverts a fraction of ad revenue from the AS
- Behavior of **Ad Servers** (AS):
 - Abstain (A) serves online ads upon users' requests
 - **Cooperate (C)** shares a part of its revenue with the ISP
 - Secure (S) secures a website to prevent loss of ad revenue

The Game

- Dynamic, finite **multi-stage** game *G*={*P*,*S*_{*A*},*U*}
- Set of players: *P*={*ISP*, *AS*}
- Multi-stage game: *Single stage game* played for *n* stages
- Total payoffs over *n* stages= Σ (payoffs at each stage)
- Complete and perfect information
- Game is modeled for a single website
- Identify Subgame Perfect Nash Equilibrium (SPNE)

Single Stage Game

- *a AS*'s total payoff in the nominal mode
- c_1 , c_2 *ISP*'s and *AS*'s total payoff in the coop mode
- *m* Fraction of clicks *ISP* diverts
- ε Cost of diverting clicks
- *b ISP*'s per fraction revenue when diverting clicks
- *C*_{ss} One-time cost of securing a website

Single Stage Game (cont'd)

- *a AS*'s total payoff in the nominal mode
- c_1 , c_2 *ISP*'s and *AS*'s total payoff in the coop mode
- *m* Fraction of clicks *ISP* diverts
- *b ISP*'s per fraction revenue when diverting clicks
- ε Cost of diverting clicks
- *C_{ss}* One-time cost of securing a website

Outline

- I. Strategic behavior of ISPs
- II. Game-theoretic Model
- III. Analysis and Results

Solving the Game

Case 1: $ma \ge C_{ss}$, $c_2 \ge a$ Case 2: $ma \ge C_{ss}$, $c_2 \le a$ Case 3: $ma < C_{ss}$, $c_2 \le a$ Case 4: $ma < C_{ss}$, $c_2 \ge a$, $c_1 \ge mb - \varepsilon$ Case 5: $ma < C_{ss}$, $c_2 \ge a$, $c_1 < mb - \varepsilon$ outcome: (C,C) outcome: (A,A),(C,A) outcome: (D,A) outcome: (C,C) outcome: (D,A)

Evaluations on a Real Data Set

- Top 1000 most popular websites in June 2009
 - based on the data of page views [Compete.com]

Non-cooperative Scenario

Outcomes of the multi-stage game for the top 1000 websites

Secured websites (secure if $ma > C_{ss}$)

Effect of the Parameters

• Fraction of shared revenue when cooperating (*l*)

Secured websites

Cooperation achieved

Effect of the Parameters (cont'd)

• Improvement of ad targeting (β_2/β_1)

Secured websites

Cooperation achieved

Conclusion

- Novel problem of *ISPs becoming strategic participants* in the online advertising business
- Studied the behavior and interactions of the ISPs and ad networks
- Applied game-theoretic model to the real data
- Effect on the Web is *positive in both cases*:
 - Cooperative ISPs: users receive better targeted ads - ISPs and ad networks earn more
 - Non-cooperative ISPs: improved Web security

- the most important websites secured first