Why Them?
Extracting Intelligence about Target Selection from Zeus Financial
Malware

Samaneh Tajalizadehkhoob, Hadi Asghari, Carlos Gafidn and Michel van Eeten!

Delft University of Technology
Faculty of Technology, Policy and Management
{S.T.Tajalizadehkhoob, H.Asghari, C.H.G.HernandezGanan, M.].G.vanEeten}@tudelft.nl

Abstract. Malware is used for online payment fraud that causes millions of
Euros in damages each year. Not every payment service provider is equally
popular among cybercriminals. This paper explores the incentives and
strategies of attackers by analyzing the instructions sent to machines infected
with Zeus malware between 2009—2013Q1. We investigated around 11,000
configuration files targeting 1.2 million URLs on 2,412 unique domains. We
also developed metrics to rank the relative attractiveness of domains as a
target. We found that attacks are concentrated: around 15% of the domains
attract 90% of the attacks. Concentration is not driven just by target size.
Approximating the size of the payment service provider via financial data from
the FDIC and traffic rankings from Alexa, we observe that size is a threshold for
getting attacked, but does not predict the intensity of attack. Attack persistence
also varies widely. Half of the domains are targeted briefly (four weeks or less),
which we believe is part of a process of trial-and-error to seek new targets.
Surprisingly enough, even though new domains are tried continuously, a
ceiling exists in the overall number of domains simultaneously attacked. This
suggests bottlenecks elsewhere in the criminal value chain, e.g, in the
recruitment of money mules. The ceiling remained in place even after the Zeus
source code was leaked, lowering the entry barriers for new attackers. Next,
we examined how inject code has evolved over time. Using a cosine similarity
metric, we compared the 1.2 million inject codes, and observe that the vast
majority of the inject code is repeated many times, with just 1% being never
repeated. On average, across all Zeus botnets and attackers, code similarity is
well over 90% from one attack to the next. This suggests code sharing, selling,
or stealing among attackers. This, again, suggest low entry barriers as well as
low development costs. Interestingly enough, these do not translate into
growing attack levels. A more general implication of these findings could be
that the underground market for malware-as-a-service, often portrayed as
making attacks cheaper to execute, is not driving the attack volume or the
selection of targets. Future work is needed to flesh out more precisely these
mechanisms.

Keywords. Botnets, cybercrime, cybercriminals financial malware, metrics, online banking fraud,
quantitative analysis, target selection, target attractiveness, Zeus

1 Introduction

Online banking fraud has increased in past decades as web-based online banking platforms have become
popular among consumers and businesses. A variety of controls and countermeasures have been put in

' The authors thank Michael Sandee and Maurits Lucas from Fox-IT for the technical assistance and providing the Zeus
configuration files. For sharing processed data on U.S banks, the authors would like to thank Tyler Moore and Lorrie
Faith Cranor.

place by the banking sector and security firms, from better authentication of users to real-time
supervision of transactions. Yet, online banking fraud remains a serious problem (Premchaiswadi et al,,
2009). According to Anderson et al. (2013), the annual global losses caused by financial fraud are in the
magnitudes of billions of euros. The European Central Bank (2014) recently published fraud statistics for
the Single European Payment Area, reporting “card-not-present” (CNP) fraud at around €800 million
(approximately $1.1 billion).

Notwithstanding the fact that impacts are substantial across industrialized countries, we also see
remarkable differences in fraud levels. For 2012, UK published a total loss of around €299 million for
CNP-fraud (FFA UK, 2013). Over the same year, France reported €160 million and the Netherlands
reported €35 million of online payment fraud (NVB, 2013; OSCP, 2013). Relative to the number of
inhabitants, France and the Netherlands suffer roughly half the level of online fraud of the UK. Sullivan
(2010) has estimated relative fraud levels in different countries in 2006. He found that Spain and
Australia experienced the lowest rates of fraud, around $.022 and $.024 per $100 of transactions
respectively, whereas the UK and US suffered worse fraud levels, losing $.086 and $.092 respectively.

One of the foundations for designing effective mitigation strategies would be to better understand what
factors drive the differences in fraud levels. An obvious driver is the extent to which payment services are
targeted by attackers. Very little empirical work has been done into the underlying reasons of why certain
targets are selected more often than others. Financial service providers differ in many respects; e.g., total
revenue, market share, number of users, authentication mechanisms, money transferring policies,
regulatory framework, and the properties of their home markets. Yet we do not know how these
differences affect provider’s relative attractiveness as a target.

An important hurdle for such work is the fact that not much data is available from which target selection
patterns could be extracted. In this paper, we present a hitherto untapped source of data on target
selection by cybercriminals: the instructions sent to the machines infected with financial malware
(‘banking Trojans’). Given that many attacks are based on financial malware, these instructions provide
an insight into the population of targets that the attackers have selected. We have studied a dataset of
instructions, so-called configuration files, which have been distributed within the ecosystem of Zeus
botnets.

Analyzing a set of 11,000 configuration files, intercepted over 4 years and containing 1.2 million targeted
URLs, specifically we set out to answer the following questions:

- What services have been targeted via Zeus malware (section 4)?

- What metrics could be developed to rank the relative attractiveness of targets (section 5)?
- What factors could explain target selection (section 6)?

- How are new targets identified (section 7)?

- Whatis the effect of the Zeus source code leakage on target selection (section 7)?

- How does the inject code develop over time (section 8)?

The main contribution of this paper is to increase our understanding of the underground economy
around malware-based financial fraud. It also helps lay the foundation for future research into the
interactions between the security tradeoffs of financial service providers and those of the attackers.

2 Background

In the course of the 1990s, banks started offering access to the bank’s computer systems via the Internet
using a browser or specific application (Claessens et al., 2002). The online channel reduced the need for
costly retail branches and paper transactions. This was not only a way to offer new services, but also a
strategy that created cost-savings for financial institutions (Claessens et al., 2002; Jaleshgari, 1999). More
recently, mobile devices have become another channel for electronic banking activities. Predictably, these
innovations also meant that financial services became the target of a variety of online attacks.

2.1 Online banking fraud

Online banking fraud is typically account takeover: removing money from someone else’s bank account. It
can take place via different attack vectors. Two of the most prominent types of attacks are credential
stealing and content manipulation, which can be used separately or in combination. Credential stealing
attacks attempt to access users’ credentials via phishing or through the use of financial malware (Adham
et al,, 2013). Content manipulation, also called man-in-the-browser (MiTB) attacks, installs malware to
manipulate at the system level the ingoing and outgoing communication between the unaware user and
the bank (Utakrit, 2009). This type of attack allows attacker to be selective in choosing the target domains
and the type of data he intends to steal or manipulate (Adham et al.,, 2013).

2.2 Zeus malware

Zeus, also known as Zbot, is a readily available malware kit that contains the tools required to build and
control a botnet. The kit is very simple to use since it does not require in-depth technical knowledge
(Wyke, 2011). Zeus was first exposed on July 2007 and worked on computers using Microsoft Windows
operating systems. Since 2012, there are also Zeus variants for Blackberry and Android phones. Zeus
malware has been primarily known for its use in financial fraud, but its features also allow other types of
data theft (e.g., password sniffing). The Zeus source code was leaked in 2011 and since then it has been
sold and traded widely in underground forums. Numerous variants of the original Zeus malware have
appeared (Kruse, 2011).

Zeus malware operates based on instructions that are specified in a so-called “configuration file”. The
configuration file has two parts: the static and the dynamic section. Information located in the static
section will be hardcoded into the bot executable and contains the information that the bot will need
when it is first executed, such as the URL where to get the dynamic section (Falliere & Chien, 2009;
Macdonald, 2011).

The dynamic configuration file (config.bin) is downloaded by the bot immediately after it is installed on a
victim's computer. The static configuration contains an RC4 key, which is used to encrypt the
communication in the botnet, including the dynamic configuration file. In this implementation, a key
stream is generated from the botnet password, and is XORed with the data (Macdonald, 2011). Note that
the keys effectively segment the total population of Zeus clients into different botnets by connecting each
one to a specific command-and-control (C&C) channel. It can therefore serve as a proxy for a distinct
attack campaign and, thereby, of an attacker - though the latter is a lot less reliable, as an attacker can
behind multiple campaigns simultaneously as well as over time.

The file is updated by the C&C server and is downloaded by the bot at certain time intervals, providing it
with new instructions. Most of the entries in the file control how and what information is collected from
the infected computer and where to inject html codes in the webpages visited by the infected machine
(Falliere & Chien, 2009). Note that for the sake of simplicity, these dynamic configuration files are called
configuration files in the remainder of this paper.

As soon as the victim’s computer gets infected, the Zeus malware attaches itself to the user’s web
browser. This enables it to monitor everything the victim does on the web, including his/her online
banking and credit card transactions (Macdonald, 2011). Zeus records everything the victim types in the
browser, including usernames, passwords and banking credentials, and sends them back to the command
and control server where information is stored in a dropzone. The criminal can then use this information
directly to steal money from the victim’s accounts or he can sell the information to other criminal
organizations that have the infrastructure for large-scale online banking and credit-card fraud operations.

Zeus acts as a Man-in-the-Browser (MitB) and modifies what victim sees on her bank’s web page.
Fraudulent transactions are executed by modifying certain web pages and injecting data into certain
fields, invisible to the user. These so-called ‘inject codes’ are located in a section called ‘Web Injects’
within the configuration file. To illustrate: sometimes criminals inject extra fields to the bank’s login
webpage that asks for additional login information, such as credit card details or PIN numbers, which are
normally not required for the login process. In other types of attacks, the webpage is modified to show a

3

fake account balance to the user, thereby hiding a fraudulent transaction that has been executed in the
background.

Zeus is the most widespread banking Trojan. This also implies that a better understanding of its
operations can yield useful insights into target selection and other criminal behavior around online
financial services. To this end, this work is dedicated to exploring Zeus configuration files.

2.3 State-of-the-art: Target Selection

Earlier work has often focused on the technical vulnerabilities of banking services and on developing
more secure online banking technologies (Li et al,, 2012). However, several authors have pointed out how
the incentives of financial service providers shape the security decisions associated with these
vulnerabilities (Cranor et al., 2013; Murdoch & Anderson, 2010; Murdoch et al., 2010).

Some earlier work has found that attackers tend to favor certain financial services over others. Moore and
Clayton (2007) studied a sample of phishing sites and found that some banks are targeted much more
frequently than others. PayPal was impersonated by 399 of the 1695 sites, while 52 banks were only
spoofed once. They do not explain this discrepancy, except indirectly: banks can influence how long
phishing sites stay online. Perhaps that serves as a deterrent. It is unlikely, however, that PayPal is much
less vigilant than 52 rarely attacked banks.

A study on click fraud by Christin et al. (2010) concluded that online-only banks were targeted more than
banks with physical branches. Levchenko et al. (2011) in their analysis of on spam value chain found that,
there is a significant concentration on certain merchant banks that assist sellers of online
pharmaceuticals.

As far as we know, there hasn’t been an in-depth empirically investigation into the extent to which some
banks are targeted more often than others. While there are many factors at play, here, it seems clear that
the criminal’s decisions play a major role. Recent security reports claimed that online banking attacks
were getting more target-specific (Sherstobitoff, 2013; TrendMicro, 2012). This suggests a conscious
selection process on the side of the criminals, but we have not yet uncovered the factors that drive this
process. Is the selection process for online banking fraud based on specific characteristics of the bank, its
policies, its location, or another set of considerations altogether? Perhaps the decisions of attackers are
less guided by informed cost-benefit tradeoffs and more by herding behavior: in the absence of good
information about the likelihood and magnitude of success, they mimic whatever other attackers are
doing (Bikhchandani et al., 1992), driven by underground forums or chartrooms where experiences are
exchanged. Yet another strategy might be to do the opposite: select targets that nobody else is attacking?

From the study of the economics of crime, we can draw upon Routine Activity Theory (RAT) to describe
why criminals go after a certain target. RAT argues that for a crime to be committed, three ingredients are
needed: a motivated offender, a suitable target, and the absence of a capable guardian at a specific time
and place. RAT has been developed in the context of conventional “offline” crime. However, Yar (2005)
has argued that the differences between the virtual and non-virtual worlds made the applicability of RAT
to cyber-crime limited. These differences include cyberspace’s different socio-interactional
characteristics such as the collapse of spatial-temporal barriers, many-to-many connectivity, and the
anonymity and plasticity of online identity.

Yar (2005) has adapted RAT to cybercrime. He identifies the four key properties that derive the so-called
“suitable target” to be selected as: value, portability, visibility, and accessibility. Value of target in online
banking fraud can be defined as the value that can be gained by the offender if the attack is successful.
This might mean that banks in richer countries or with higher account balances would be selected more
often, all other things being equal. Portability is about the ease with which the criminal gains can be
moved, such as money being transferred in near real time via irreversible transactions. Visibility is about
how visible the target is to the cybercriminals. Finally, accessibility is about how easy the target can be
reached.

In sum, we are not aware of any prior empirical work addressing the research question of what factors
drive criminals to target certain online financial service providers more often than others in online
banking fraud.

3 Method

3.1 The dataset

In this paper, we analyzed a collection of Zeus financial malware data files provided to us by Fox-IT, a
leading Dutch security firm with many clients in the financial sector. The dataset consists of around
hundred and fifty thousand (144,625) captured files that were suspected to be configuration files. Of
these, we investigated 10,673 configuration files that revealed targeted domains. The rest of the captured
configuration files could not be used because of one of the following reasons: (1) the file could not be
decrypted with one of the keys extracted from the executables or because it was in an unknown format;
(2) the file was decrypted but not actually a configuration file; (3) the file was corrupted or incomplete
(some files were only captured in full after multiple attempts); (4) the file was decrypted but did not
contain a web inject section and therefore no targeted domains.2

The configuration files were collected over a period of just over four years (2009-2013Q1). They were
captured using honeypots located all over the world (though more concentrated in Western countries and
less in Asia). The configuration files were collected using two different methods: they are gathered by
running live Zeus samples or by emulating the malware to download configuration files.

The configuration files are encrypted plain text files. Each captured file, along with the time stamp of
when it was captured and with the key with which it was decrypted, if applicable, was stored in a MySQL
database. As already explained in section 2.2, each Zeus configuration file contains a ‘web inject’ section
which includes targeted URLs, attack instructions, HTML scripts to be injected into the pages served from
the attacked URL, and mechanisms for bypassing the authentication procedures of the institution. Below
is an example of the web inject section of Zeus configuration files. These configuration files typically
contain multiple injects (113 of them, on average), each of which varies from just a few lines of code, as in
the example below, to over two thousand lines:

set_url https://REMOVED.com/OLB/secure/AccountList.aspx <FLAG_GET><FLAG_LOG>
data_before
id="dgDepositAcctsheader0”*>
data_after
</table>
data_inject
datas_end

3.2 Extracting targeted domains and botnet keys

To answer our research questions, we need to parse the configuration files. First, we extract targeted
URLSs from the configuration files and associated it with the time stamp and the RC4 key belonging to that
file.

The configuration files revealed that a total of 14,870 unique URLs were targeted. Many of them contain
different paths of the same domain. All in all, we identified 2,412 unique domain names. Extracting the

? Sometimes the malware only monitors the machines http and https post requests and gathers system information without
modifying anything. That is why some of the configuration files do not contain the web inject section and could not
reveal targeted URLs.

domains from targeted URLs was not a straightforward process, as some configuration files contain URLs
with wild cards. Table 1 displays some examples of such URLs.

Table 1-Example of target URLs in Zeus configuration files

Targeted URL Extracted Domain
/bancopostaonline.poste.it//formslogin.aspx poste.it
*banking.*sparkasse*.de/cgi/anfang.cgi* sparkasse.de

gruposantander.es

*mpresas*gruposantander.es*opaccesoempresasabe* le?
google.?

http://www.google.*&q=*

The algorithm with which we extracted the targeted domains from the URLs is displayed in Figure 1. In
the cases of URLs without wildcards, we extracted targeted domains by trimming the path. In the cases of
URLs with wild cards, we reconstruct the targeted domain using regular expressions for comparing the
last part of the URL (path, query or fragment) against the set of targeted URLs without wildcards. If a URL
matches the same URL without wildcards in more than 90% of the cases, we assume that the targeted
domain is the same as the domain of the URL without a wildcard. For around 6% of all URLs we could not
reliably determine the targeted domain. Either the URL did not match any of the URLs in our set or it
matched with multiple URLs and none of them reached the threshold of 90%.

Domain
Without Trimming rest of URL

URLs

Extracting the
One Match | relevant domain Do

- Missing

Checking again

-~ With Wildcard No Match manually

Domain

Multiple
Matches Matching with

90% probabllity

Yes- Extracting the

relevant domain Domain

Too many

matches Dol

Figure 1- The algorithm used for extracting targeted domains from targeted URLs

Ideally, we would like to count the number of attackers going after each domain. There currently is no
reliable way to measure this. We use the RC4 keys as proxies for the number of botnets in use, i.e., the
number of campaigns that have been undertaken - in effect treating the keys as unique identifiers for
different Zeus botnets. These keys can only be changed by updating the malware with a new binary and
migrating the command-and-control server to a new URL. Typically, this happens when a botnet is taken
down. The operator then continues with a new bots and a new location for downloading the
configuration, which technically makes it a new botnet, as the old bots are no longer able to connect.

3.3 Country of targeted domains

We have enriched the dataset by adding some information about the targeted domains from other
sources. The geographical location of each attacked domain was determined manually. For this purpose,
we have used four sources of data:

i. Where the server/infrastructure is located (MaxMind, 2014);

ii. Where the traffic of the domain comes from, according to Alexa (Alexa Internet, 2014);
iii. Where the site owner’s headquarter is located, according to the domain’s homepage;
iv. The top-level suffix of the domain (TLD).

Most of the time, these sources consistently pointed to the same county. We manually checked cases
where they didn’t match.3

3.4 Size of targeted domains

We estimated the size of a target domain in two ways: by traffic volume (Alexa ranking) and, for U.S.
financial institutions, also by the total of deposits held by the institution, as reported by the U.S Federal
Deposit Insurance Corporation (FDIC). The FDIC is a government corporation operating as an
independent agency that provides deposit insurance guaranteeing the safety of a depositor's accounts in
member banks. As of February 2014, they insure 6,790 institutions (FDIC, 2014). They provide certain
statistics for these institutions, such as its total assets, deposits, the locations of its headquarters, its web
address, etc. Through the web address field, we can connect 170 of these institutions to the data in our
Zeus dataset.

Data on the volume of web traffic of targeted domains is gathered from Alexa Internet, a subsidiary of
Amazon.com that provides commercial web traffic data (Alexa Internet, 2014). Using data gathered via
the Alexa toolbar and that provided by sites owners, Alexa ranks sites based on their traffic data. They
also use data from the DMOZ open directory project to categorize sites ("Odp- Open Directory Project,”
2014). We have pulled in this data from the Alexa website for the majority of the domains in our dataset.
In later sections of the paper, we use the FDIC deposit and Alexa ranks as proxies for domain size.

3.5 Limitations

We already discussed the limitation of using RC4 keys as a proxy for botnets and attackers. Here, we focus
on the possibility of biases in the collection method. Perhaps the honeypot network is less likely to
capture attacks against certain domains or countries, or the captured and decrypted files are biased
towards the less competent attackers.

To check how representative our sample of configuration files is, we crosschecked our data with Zeus
Tracker data from Abuse.ch, a well-known anti-Zeus initiative. We compared the C&C URLs from which
the configuration files were between the two datasets for the specific period that Zeus Tracker published
this data (Sept 2010-March 2013). First of all, there is a large difference in volume. Where Zeus Tracker
published 740 configuration URLs, our dataset identified around 7,500 URLs for the 11,000 files (and
more than 23,000 URLSs for the overall set of around 144,000 captured files). This large difference might
partially be attributable to the fact that Zeus Tracker does not seem to log all the different URL paths for
the same domains. That being said, it does seem that the Fox-IT collection method is more
comprehensive. Of the 740 URLs listed by Zeus Tracker, 450 are also in our dataset with the exact same
path. Looking at the domains only, the overlap is even larger. So our dataset seems to cover the bulk of
the Zeus Tracker data, plus a lot more.

? One interesting pattern that emerged and could be explored in future work is that quite a number of the banks were located
in microstates and known tax havens. These ‘offshore’ banks are most probably used by a small fraction of the
population, and it is interesting to see that Zeus has been used to target this small group.

As mentioned in section 3.1, the data was gathered via honeypots, predominantly located in European
countries. This might have introduced a geographical bias. Indeed, in the next section we see that the
European countries are more often targeted than those in the U.S. or Asian targets. This does not per se
imply, however, that there is a bias in the data. Our industry partner argues that the attackers did not
differentiate among the infected clients based on their geography directly. The dominance of Europe
targets may reflect the fact that online banking services have been offered more widely by European
providers and have been adopted more comprehensively by consumers. Also, many European banking
systems have near real-time transaction processing, which makes it easier for criminals to move money
out of the account before anti-fraud operations can stop it.

The situation in the U.S. is rather different. The market is less consolidated, with thousands of smaller
banks, not all of them offering online banking facilities. Furthermore, of the banks that offer online
services, not all of them provide cross-bank transferring capabilities, making it harder for attackers to
cash out funds. Sometimes there is a need for in-person validation of the receiving account beforehand.

We did notice that Asian countries seemed underrepresented. That might indicate a sampling bias or it
might reflect a different attack history. For example, the Zeus-variant Citadel has been reported to have
started targeting Japanese banks only late in 2013, which is outside our observation period (Baylor,
2014). Another explanation is that Asian attacks were predominantly executed via other malware
families, such as KRBanker. We should also mention that only a small percentage of configuration files in
our data belong to the newer Zeus variants, which is understandable since many of the new variants have
become active in the course of 2012.

4 Targeted domains in the dataset

As described in section 3.2, from a total of 14,870 unique targeted URLs, we have identified 2,412 unique
domains. Not all of these are financial service providers. Among the targeted domains we could find anti-
virus companies, news sites, webmail providers, and social networks, as well as domains we could not
categorize, because the sites were no longer live. We do not know the exact proportions of financial
service providers versus others. Using Alexa, we were able to map 43% of all domains to a specific sector.
Of these mapped domains, 760 (74%) were financial service providers and 272 (26%) domains belonged
to other sectors. The remaining 1,380 domains are uncategorized (see Figure 2). Among uncategorized
domains, we selected a random sample of 100 and manually checked their associated sector(s). Of these
domains, we were able to map 72% of them. Of these mapped domains, 53 (73%) were financial service
providers and 19 (26%) were from other categories such as antivirus companies, security service
providers, and online consultancy firms.

Over the whole period, on average 600 unique domains were attacked each month across all observed
botnets (Figure 3). In section 6, we will explore the time trends and their relation with the number of
attacked domains in more detail. In terms of geographical coverage of the data, the targeted domains
cover 92 different countries all over the world (

Table 2). Unsurprisingly, some countries suffer substantially more attacks than others. In section 7 we
will discuss these geographical distributions in more detail.

Categories of domains based on Alexa

¥ Financial service providers
W Other industry segments

" Uncategorized by Alexa

Figure 2- Categories of domains based on Alexa (Alexa Internet 2014)

1000

Attacked domains per month

900

800

]
g 700

£600
2500

3400

=
£300
=

<200
#100

o
2009 01 ===

2009 03

2009 05
2009 07

2009 09
2009 11

2010 01
2010 03
2010 05
2010 07
2010 09
2010 11

2011 01
2011 03
2011 05
2011 07

Figure 3- Number of attacked domains each month

Table 2- Geographical distribution of the attacked domains (number of domains per country in the dataset)

Country
United States
Germany
United Kingdom
Spain
Australia

Italy

Russia
Canada
France
Poland
Switzerland

India

Portugal

Latvia
22 Austria

18 Colombia

18 Norway

18 Thailand

17 Belgium

17 United Arab Emirates
16 Saudi Arabia

16 Turkey

14 Argentina

Country

14 Chile

14 Netherlands
12 Cyprus

12 Finland
Romania
Czech Republic
Ireland
Venezuela
Brazil
Panama
Singapore
China

Hong Kong
Japan
Lithuania
Mexico
Dominican Republic
Greece
Hungary
Iran

Israel

South Africa
Sweden

=
o

OO0 0NN NN N0 v oo

NNNNNWWWWWWAEMMMDMMDMDMDOO U GWVH

Country
Luxembourg
New Zealand
Ukraine
Belarus
Bulgaria
Denmark
Estonia
Gibraltar
Nigeria
Pakistan
Peru

Virgin Islands
CuraA§ao
Kuwait
Malta
Puerto Rico
South Korea
Tanzania
Bahrain
Belize
Bermuda
Bolivia

2011 09
2011 11

#
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

2012 01
2012 03
2012 05
2012 07
2012 09
2012 11

Country

Costa Rica

Isle of Man

Lebanon

\YEIEVSE]

Andorra

Antigua and Barbuda
Barbados

Cocos (Keeling) Islands
Egypt

Iceland

Indonesia

Jamaica

Jordan

Kazakhstan

Kenya

Liechtenstein

Niger

Philippines

Saint Vincent and the Gre
San Marino

NIEISE]

Taiwan

Cayman Islands 1 Uruguay

2013 01
2013 03

There are 2,131 unique RC4 keys in our dataset, which we interpret as an approximation of the number of
botnets in use. Figure 4 displays the trend of botnet activity from January 2009 up to March 2013. The
blue (upper) line displays the number of configuration files sent each week by all botnets together. The
red (lower) line indicates the number of botnets that were active in that week, as counted by the number
of RC4 keys in use. The number of active botnets decreases over time. The same happened with the
number of configuration files that were distributed. This might be attributed to the Zeus takedown efforts
that were coordinated by Microsoft with different governments and security firms around the world
(Domingues Boscovich, 2012), although the downward trend had started well before those efforts.

Comparing number of configuration files against number of active botnets per month (the two lines in
Figure 4), we see that they roughly follow the same trend. This is to be expected, as the number of active
botnets is determined by whether or not they have distributed a configuration file that week. However, it
also can be seen that, on average, botnets sent out multiple files. This is unevenly distributed. Some are
much active than others. This discrepancy highlights that raw counts of the number of times a domain
shows up in configuration files is not really a good metric for the relative degree in which a domain is
targeted. We explore more informative metrics in the next section.

700

600

500 A,

,»“'_1 .
300 5 # of configs
200 /!"\, / - \r A

/ . e - * /
100 / \

of active botnets

C)Q\’ o}o“‘ qo'\ C)N,Q ST Q@ Q'\,Q & ,\/0“‘ \,6\ NSRRI RN IR\
,@Q ,LQQ RN NN S\

S
A0 AT AT AR 4D ADT ADT AD” D ADT AR D ADT AD” A0

Figure 4- Number of configuration files and number of active botnets

5 Developing Metrics

In order to be able to understand how popular different domains are as targets of online banking fraud,
we need to rank them against a meaningful metric. Until now, there is little empirical work on the
popularity of targeted domains. Even where it exists, the ranking is based on poorly conceived metrics. To
illustrate: a security paper published by F-Secure (F-Secure, 2012) reported a list of top 20 most attacked
domains by the SpyEye malware in 2012. The rankings were calculated by simply counting the number of
times a domain appeared in the malware configuration files. We believe that such raw counts are not
reliable, mainly because the number of times a configuration file is sent is not necessary equal to the
number of attacks. Taking the example of SpyEye malware, the configuration file is built into the binary,
so attack instructions are released as often as the binary is changed. These changes are likely to be driven
by signature updates in the antivirus software that SpyEye tries to evade, rather than by the target
selection process of cybercriminals.

There are numerous ways in which bot herders may choose to update configuration files; one may update
a configuration file once per days, while another one might adopt a lower update frequency, perhaps
because she herds multiple botnets or because the botnet has more stable attack code. Therefore, the
number of configuration files per day sent by a botnet may have little correlation with the actual attacks
and, thus, with target popularity. To illustrate, in

Figure 5 we display the configuration files of three different Zeus botnets in the same week. Using raw
counts we would say Botnet 1 attacked ebay.com three times this week and Botnet 3 two times, so in total

10

ebay.com is attacked five times in this week. However, in practice, all of the configuration files sent by
botnets in one week are only the updated versions of the initial ones. It makes no sense to count them as
separate attacks.

AN

Botnet 1 Config 1:Ebay.com, Paypal.com, Amazon.com

Config 2:Ebay.com, Paypal.com, Amazon.com

Config 3:Ebay.com, Paypal.com, Amazon.com

Botnet 2 Config 1:Amazon.com

AN

Botnet 3 Config 1:Ebay.com, Paypal.com

Config 2:Ebay.com

)
41

Figure 5- Example for explaining why ‘raw counts’ of attacked domains are not reliable as metric

In short, in order to be able to rank popularity of targets and to deal better with these differences, we
need to develop more reliable metrics. Three alternatives could be:

Average number of botnets
attacking a domain per week ~

Number of botnets attacking a domain. Using this metric, a domain’s attractiveness is defined
by the number of Zeus botnets, counted by different RC4 keys that simultaneously targeted that
domain.

Number of weeks a domain was under attack. The Zeus data can also provide information
about the persistency of an attack over time.

Average number of botnets attacking a domain per week. This metric is basically a
combination of the previous two. The metric eliminates some of the limitations of raw counts by
normalizing the data: it merges all configurations for a single botnet sent during a week and then
counts the number of botnets attacking that domain in that week. To compare over longer
periods, one could add up the count for each week (‘botnet weeks’) or average them. The formula
below displays how the metric is calculated when being averaged across n weeks.

n
= (Z botnets including domain in their configuration file in week (k))/n
k=1

6 Relative Attractiveness of Targets

Now that we have defined more reliable metrics, we can inquire into the relative popularity of different
targets and the attackers’ incentives behind this pattern. We do this by discussing three questions: (1)
how are the attacks distributed across targets? (2) what is the relation between target size and
popularity? Or to put it differently: do bigger targets attract more attacks? And (3) what is the pattern of
persistence of attacks against different targets?

6.1

Distribution of attacks

In Figure 6 we rank the popularity of domains as attack targets using the metric number of botnets
attacking a domain per week. The rank shows a highly concentrated pattern. The pattern of attacks is in a
power law distribution, where 15% of the domains account for 90% of the attacks.

11

100%

80% -

w
< /
2] |
§70%'/
= |
os
T o
EQ50%‘I
@ 1
2z 40% -
Z o |
3 0% /]
520%‘
° I

10%’

0%
LTI R
ESET HIAE A EF AT SFTHAITEZLSIaE = B

CEE AT IFTR AR ERERE RS

% of unique targeted domains

Figure 6 - Cumulative percentage of domains against attacks (in botnet-weeks)(2009-2013Q1)

Target popularity can also be expressed by metric the number of weeks a domain is under attack. Here,
too, we see a highly skewed distribution: some domains are attacked only briefly, while others remain
under attack for the whole period of our dataset. Figure 7 shows the domains distributed over the
number of weeks they were under attack between January 2009 and March 2013. A small number of
domains (88) were always under attack for the whole 216 weeks. A much larger group of domains
(1,108) came under attack for four weeks or less. Finally, 1,216 domains fall between the two extremes:
occasionally and often attacked domains.

One interpretation of Figure 7 could be that the range of potential attack targets for criminals is wide: the
fact that some of the attacks are short-lived might indicate trial-and-error on the part of attackers, i.e., the
attacks aren’t successful or don’t prove attractive. We will revisit this idea in section 7. An alternative
explanation might be that some of these domains are attacked for a specific purpose, i.e.,, as a part of
targeted attacks.

1,000

600

400

Number of domains under attack

0 S0 100 150 200 250
Number of weeks domains were under attack

Figure 7 - Attack persistency on domains attacked by Zeus malware (2009- 2013Q1)
We categorized domains in Figure 7 into the different groups (see Table 3). What stands out is the fact

that the portion of targets that are financial service providers increases with attack persistency, while the
number of countries decreases. Here, the attackers reveal their core business: domains is always attacked

12

category are located in a compact set of countries, most notably Spain, U.S., UK, Italy, Russia, and
Germany.

Table 3 - Domains grouped by attack persistence

Group Definition Domains % Financial Institutions* Countries
Briefly attacked Attacked for 4 weeks or less 1,108 54% 81
Occasionally attacked Attacked >4 weeks and <6 months 571 80% 58
Often attacked Attacked >6 months and <4 years 645 94% 46
Always attacked Attacked all four years 88 91% 13

6.2 Size and attractiveness of U.S. banks

The concentrated patterns in the attacks raise the obvious question of incentives: why do so many
attackers go after the same cluster of targets? Routine Activity Theory (see section 2.3) identifies four
factors that drive target selection: value, portability, visibility, and accessibility. At this moment we cannot
systematically assess portability or accessibility, though the configuration files do contain inject code
aimed to bypass two-factor authentication mechanism of domains, which might tell us more in the near
future. Value and visibility can also correlate with the size of the attacked financial service providers, as
measured in its customer base and the wealth of those customers. In other words, are the largest
providers in the richest markets attacked more? The logistics of malware-based attacks seems to favor
banks with a large customer base, as it increases both the odds of finding infected customers as well as
spreading out the costs of developing the inject code over more attacks - similarly to why most malware
writers target Windows-based machines.

We have crudely estimated the size of a target via its web traffic volume (Alexa ranking) and, for the U.S.
financial institutions, via FDIC data on the volume of deposits (see section 3.4 for more details). The FDIC
lists U.S. banks and financial institutions with some of their financial and administrative properties,
including assets, deposits, and net-income. In Figure 8 we have plotted the top fifty U.S. banks - in terms
of deposits - against the average number of botnets attacking them per week over the whole period
(2009-2013Q1). The red (top) line in the graph describes the amount of deposits® of each of the
institutions on a log-scale; the blue (bottom) line indicates the average number of botnets attacking all
domains® of that institution per week. Clearly, the two variables do not maintain a strong relationship.

Mapping the attacked domains to the FDIC list yields to two interesting points. The first relates to the fact
that out of around 6,500 active financial institutions, only 175 have been targets of Zeus attacks in our
data. Assuming that our sample is representative (see section 3.5), this is a surprising low number.
Almost all of the largest banks (48 of the top 50) are attacked and present in the dataset.” The situation
for the smaller banks is completely different. This might be cause by the fact that many smaller banks in
the U.S. either did not provide online banking services or have outsourced these to a smaller number of
third parties who may or may not be among the attacked domains. Another explanation is that they

4 This percentage is calculated using the Alexa categories for the sites that are categorized by Alexa - the numbers do not
include the uncategorized domains in each group.

* We prefer deposits over assets as a measure of size, to distinguish between financial institutions that might provide mainly
mortgages and have little banking and saving services; these will have high assets but low deposits, and so far have been
of less interest to botnet-based forms of attacks.

6 Some of the institutions have multiple web addresses and domains. We aggregate the attacks on all of these related
domains in this figure.

7 The two missing banks offer online banking via a third party. These sites handle online banking services for multiple
banks. They are both present in our dataset, but attacks on them cannot be attributed to the individual banks.

13

simply are not attractive targets for Zeus-based attacks, given their small customer size or limitations on
how and where funds can be transferred.

Bank size VS attack intensity

1E+10
1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

Deposits (USD, logged)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
bank #

Figure 8 - Deposits (top) and Zeus attack intensity (bottom) for the top fifty U.S. financial institutions

So whether a bank gets attacked is related to its size; above a certain threshold, a bank becomes a target.
Beyond the threshold, however, size no longer seems to be a factor. The intensity of attacks is hardly
related to size: the average number of botnets attacking each week fluctuates from less than 1 to 20. The
result of the regression analysis is an adjusted R2 of 0.25 (N=50, F=0.00) - a weak correlation. This clearly
suggests that there are other factors driving target attractiveness than merely the size of bank or its
customer base.

6.3 Size and attractiveness worldwide

Does the pattern we observed for the U.S. banks hold across the whole population of targets? Figure 9
shows the relation between Alexa rank of a domain and the persistency of the attacks. On the right, we
have included box plots of the Alexa ranks for the different persistence groups discussed in section 6.1.
The Alexa rank is a proxy for the size of the domains, with lower rank numbers indicating more incoming
traffic, i.e.,, more users.

8.00 8.001

® o 8
©° oo ©
%5650 .
6.00]
0
6.00 OQ? K o P 8
% @ 8 5 o 008% 8 X
c g 00 of <
s oo &80 H
M é@ ° 8§ % @ o =
£ ® o0 ° o
b} © o 8 g |
2 o %o Og %agoo 090 Oo 3 4.00
®, O g%0, o o <
| 4.004 83, 00670008 O © € o |
S m%%oo 0 8 o
o ° 5 g
- o 0 00 °
oo 0 ® 009 o g
o @ @
o 255
o o ©) .
2009 709 75 4494
° @ ¢ 16281 673 & 1535
2,38 1533
’ 8 2,30291,134 1,4120 14397 ¢

2.004

0O
2,367

450
220
OZ‘ZDB

o
2,402

23049 414
9840
[¢]

009

o
1,131
T T T T T T T T
0 50 100 150 200 250 1 2 3 4

n_weeks_underattack persistence_group

Figure 9 - (Left) Scatter plot of domain rankings vs. number of weeks they are targeted; (Right) box-plot of domain
ranks of the different groups. (Only financial institutions, log-transformed. Lower rank number indicates a site has more
visitors.)

Running Spearman’s rank correlation test, we see a weak but significant negative correlation between
lower ranks (domains with more visitors) and number of weeks they are under attack (rho=-0.13,
sig=0.00, N=1,995). The results are similar if we rerun the correlation only for financial institutions
(rho=-0.19, sig=0.00, N=731). The correlation is driven mainly by the difference between the ranks of the

14

briefly attacked domains and the always attacked domains. The result of Kruskal-Wallis test for
comparing sample means is presented in Table 4 supports this. The same test does not find a significant
difference in the traffic ranks of domains that are briefly attacked and occasionally attacked, nor between
those that are occasionally attacked and often attacked.

Table 4 - Kruskal-Wallis test results comparing means of Alexa ranks among different target groups

Ranks Test Statishcs‘c"b
- N v Rank I alexa_rank

persistence_group ean Ran Chi-Square 63.626
alexa_rank 1 866 1112.76 ar 3

; e

: a. Kruskal Wallis Test
4 79 841.88 b. Grouping Var: persistence_group
Total 1995 : ' -

In short: the size of a financial service provider seems to influence target selection mostly in terms of a
threshold: providers above a certain size are much more likely to be targeted. Beyond that threshold,
however, size does not really seem to impact attack intensity. Within the top 50 of U.S. financial
institutions, we see large differences in attack volume. The same holds for the wider group of larger
targets. So far, it is unclear what other factors are at work here.

7 Seeking New Targets

A sizable number of domains (1,108, about half of the total) were targeted for four weeks or less in the
four-year period (See Table 3). Taking a deeper look into the domains in that group, we realize that this
group stands out from the others by its diversity: from the largest to the smallest domains, spread out
over 81 countries and multiple industries, only half of which are financial services. This diversity makes
sense if we interpret it as the result of a process of trial-and-error by the attackers. A new target is chosen
for attack. The attacker identifies the relevant URLs, develops the inject code, and pushes the new
configuration to bots under his command, and waits for victims. If the attack is successful, the attacker
will persist. If, however, within a few weeks and a handful of attempts, the attack is not successful, the
attacker has to decide how long to keep incurring costs before moving on to a different target. The lack of
success might be caused by effective defense measures by the targeted institution or its users. It might
also be the case that the attack was technically successful, but the value of the loot - e.g., the price that the
underground market was willing to pay for the captured data - didn’t merit further attacks.

The rate of trial-and-error is reflected in the number of new domains that show up over time. New
domains are being tried all the time however, with peaks now and then: on average 119 domains are new
each month - either never attacked before, or briefly in the months before the last. The overall number of
domains getting attacked per month seems to be remarkably constant with a clear ceiling. An average of
601 domains each month become targets of Zeus attacks (0=172, CV= 0.29). This is across all botnets in
the dataset.

This stable ceiling on the number of targets pursued simultaneously is surprising, given the ongoing
development of malware-as-a-service, which supposedly reduces entry barriers and would attract new
attackers. It suggests there are bottlenecks elsewhere in the criminal value chain. With money mules, for
example, there appear to be no economies of scale (Krebs, 2012). In fact, the security architect of a
multinational bank recently told us that they work on the assumption that recruiting mules is the most
expensive and vulnerable resource for the attackers. The bank changed its defense strategy based on this
insight: when a fraudulent transaction was detected, it was not blocked, but simply flagged and tracked
until it is was completed and the mule had been revealed. Only then was the attack terminated. This
meant that the attacker had to burn through his scare resource - mules - without knowing the odds of
success.

15

The ceiling remained in place even after the Zeus source code was leaked and became widely available
around May 2011. Several security firms predicted that this would increase the volume of attacks, as the
leak would depress prices of Zeus-related services in the underground economy and further reduce the
entry barriers for new attackers (Rashid, 2011; RSA FraudAction Research Labs, 2011).

Trial of new domains per month

1000
900
800 —

All attacked domains

400 -+ a - New from previous
| month
300 - I == Never seen before

S .) 3
AU GRS U U CHR MU U USROS G CR R O U

Figure 10- Trial of new Zeus targeted domains per month (2009-2013Q1)

Our results however do not support this prediction, even though there is hardly a shortage of potentially
profitable targets.8 Table 5 summarizes the point: the last row in the table indicates the number of new
domains that were targeted only after the code leak, and the number of new botnet-keys that were
activated. The numbers are lower than those for the period prior to the leakage. If we normalize these
counts per month, compensating for the fact that the earlier period lasted a bit longer (28 vs. 22 months),
the rate before the code leak was 48 botnets per month vs. 33 afterwards (if we leave out the botnets
active in both periods).

Table 5 - Number of domains attacked and botnets active before and after Zeus code leakage

Domains attacked Active botnets
Only before May 2011 786 1,334
Both before & after May 2011 949 87
Only after May 2011 519 712

The lack of growth in the population of Zeus targets resembles the phenomenon discussed by Floréncio
and Herley (2013): the majority of users go unharmed each year, despite the claims of security experts
that many attacks are getting cheaper and easier. One of their explanations is victim diversity: if the
fraction of all users who succumb to a certain attack is too small then the entire attack is rendered
unprofitable. This is especially true when the gains per victim are unclear.?

8 Others also reported the absence of a rise in attacks (Krebs, 2011).

% An exception to this rule is when the attacker has information at hand showing that the victim is actually valuable. This
might explain the existence of the banks from the microstates in the datasets, given the guess is that these are used for
instance tax evasion or similar purposes, and belong to wealthy people.

16

The relatively stable pattern also belies another claim: that the Microsoft-coordinated takedown effort of
Zeus command-and-control infrastructure - codenamed B71 - had a noticeable impact on the operations
of the attackers. Microsoft never claimed that have fully disrupted Zeus, but rather a “strategic disruption
of operations to mitigate the threat” (Domingues Boscovich 2012). Within the population of botnets that
we have tracked over the four years, no such disruption is visible. Although there was a temporary dip in
activity around the time of the takedown, March 2012, the decline towards that low has started well
before operation B71. In fact, briefly after the operation, botnet activity started to rise again to previous

levels.
Entrance of botnets
250
200 Zeus source code leakage
150 - Microsoft Zeus takedown effort
== All active botnets
100 -
New from previous
month
50 4 Never seen before
0
A RN b R dmb R Addmb N o o m
O L B U B G

Figure 11 - Entrance of new Zeus attackers (botnet keys) per month

We also took a look into the relationship between botnet lifetime and the different groups of targets in
terms of persistency of being attacked. To do that, first we categorized botnets in terms of their lifetime
into four different groups (see Table 6). The first group contains botnets that were only active for one day
and we treated them as a separate group. For the rest, we divided the total number of botnets or RC4 keys

into groups of almost equal size.

Table 6 - Botnets grouped by lifetime

Group Definition # Botnets (RC4 keys)
Botnet lifetime 1 Active 1 day 1,315

Botnet lifetime 2 Active >1 and < 30 days 272

Botnet lifetime 3 Active equal or >30 and < 105 days 272

Botnet lifetime 4 Active equal or > 105 days 274

Next, we looked at the relationship between botnet lifetimel? and the attack persistency category that
they attacked. Table 7 shows a cross table of variables ‘attack persistency’ and ‘botnet lifetime' of number
of botnets. As it can be seen from Table 7, more botnets attacked domains that are located in the ‘always
attacked’ category rather than the domains that are located in the ‘briefly attacked’ category. Moreover,

1% L ifetime of each botnet or RC4 key is calculated by subtracting the first and last time that the key is seen. This has strong
(rho = 0.97) significant correlation with the number of weeks that a botnet is active.

17

most of the attacks on domains that are briefly attacked are performed by botnets with the longest
lifespan. We hypothesize that those might belong to the most professional attackers, who are able to keep
the botnets up and running the longest. The attackers in this category also do the most trial and error,
which fits with the hypothesis that they are also the most capable. The number of botnets in this cell is
higher than the expected value (observed count: 70, expected count: 28.94)11.

Table 7 - Cross table of number of botnets with different lifetime in different attack persistency categories

Attack Persistency
Briefly attacked Occasionally attacked | Often attacked Always attacked Total
Botnet lifetime 1~ Count 62 209 657 1235 1315
Expected Count | 101.121 31.342 736.510 107.025
Botnet lifetime 2~ Count 23 89 217 241 272
Expect Count 27.537 86.146 200.566 292.750
Botnet lifetime 3 ~ Count 32 121 236 250 272
Expect Count 29.397 91.965 214.113 312.524
Botnet lifetime 4 Count 70 166 252 262 274
Expect Count 28.943 90.545 210.809 307.701

Looking at the country of the attacked domains, the pattern seen in other graphs is confirmed. Figure 12
shows the overlap between the targeted countries across four years (2009-2012). Out of the total 92
attacked countries, seven were only attacked in 2009, and seventeen only in 2012. This shift in the variety
of the attacked countries, despite the overall stability in the size of the attacks, points to a trial-and-error
process with finite resources and players; i.e., the attacks are not spreading like mushrooms.

2010 2011

Figure 12 - Venn diagram of location of attacked domains across the years

8 Attack code development

8.1 Descriptive analysis

Our dataset contains 1,146,860 target URLs with associated inject codes. These inject codes are by no
means unique. In fact, on average each inject code is repeated 27 times. Figure 13 shows the number of
times a specific piece of code is used in different configuration files. Note that virtually all inject codes are
reused two or more times among the different configuration files.

"It should be mentioned that cells in this table are not independent and therefore the applicability of chi-square expected
value is limited.

18

100

10

number of times code is repeated

1 10 100 1000 10000 100000

Different inject codes

Figure 13 - Number of times an inject code is used among different configuration files

Just 5% of the inject codes was re-used less than 10 times. More striking is the fact that 43% of all inject
codes was repeated over 1,000 times. It is a safe bet that any new configuration file found in the wild will
contain some inject codes that are identical or trivially different of a previous file. Just 9,679 inject codes
(1.19% of the total amount) that were not repeated in any other configuration file. Even in this group, the
bulk consisted of slight revisions of previous code aimed at the same URL.

This high amount of code repetition is intriguing. Attackers have clear incentives to reuse old code: it is
more cost effective to make incremental modifications and reuse the same proven configuration files than
to develop new ones from scratch. The modifications are necessary to evade new security measures.
What is puzzling is that the attackers can get away with this little effort. Despite many countermeasures
that have been proposed (Mitropoulos et al.,, 2011), malicious users continue to use the same inject code.
This pattern holds both before and after the code leakage.

To acquire a better understanding of these repetitions we analyze the amount of code lines per attack.
Results show that the average length of an inject code is around 36 lines (with a standard deviation of
76.8 and coefficient of variation of 2.1). While there are complex attacks with more than 1,000 lines, they
represent only 0.05% of the total number of attacks. The majority of the inject codes (56%) range
between 10 and 100 lines. These are illustrated in

Figure /4. The high deviation in the number of lines gives an idea of the complexity and diversity of the
attacks. Looking at the attack codes, we see a wide range of ideas, from a simple rendering of a page
element suggestion to the user to install an older (i.e., more vulnerable) web browser, to larger inject
codes containing actual scripts to grab personal information.

2500

1000

number of lines

500

Number of times an inject code is repeated

Figure 14 - Number of lines per attack code
19

8.2 Similarity analysis

To more systematically analyze the level at which attackers re-use existing code, we applied a comparison
technique to the whole dataset. Different text comparison techniques can be applied to find
discriminating features of different codes. Our approach is an adaptation of text retrieval matching using
the so-called Term Frequency-Inverse Document Frequency (tf-idf) methods (Jones 1972). These
techniques have been widely used for comparing different malware (See e.g. Karnik et al., 2007; Shahzad
& Lavesson, 2012; Suebsing & Hiransakolwong, 2009), and for detecting plagiarized documents (Hoad &
Zobel, 2003). We also report the differences between two inject codes, expressed as a minimal list of line
changes to bring either file into agreement with the other in relation to the total number of code lines
(Hunt & Mcllroy, 1976).

First, we processed the configuration files to extract the inject code and conform the strings. Then, we
tokenized the symbols found using the classic separators (e.g., dot, comma, colon, semi-colon, blank
space, tab, etc.). In order to represent a string collection, a common approach in text comparison is to use
a Vector Space Model, which represents documents algebraically, as vectors in a multidimensional space.
This space consists only of positive axis intercepts. After that, we constructed a text representation of an
inject code 5, which is formed by words s;, such that C= (s1,83,-**,S,), n being the number of words
within the code. We defined the weight w; ; as the number of times the word s; appears in the inject code

C_‘;-; if s; is not present in Ej, w;; = 0. Therefore, any attack code C_‘)] can be represented as the vector of
weights C_‘; = (Wy,jS1, Wy, jS2, ", Wy jSn)- Finally, we used tf-idf weighting schema, where the weight of the

ith word in the jth injection code, denoted by w; ;, is defined by:

. n j B
w; i =tfi;-idf; = =—2-1lo (—),
i,j fL,] fl ank,j g y
where n; ; is the number of times the word s; is not present in C_‘}, 2k My j is the total number of words in C_‘;-,

B is the number of codes being compared and y is the number of codes under comparison that contain the
word s;.

Tf-idf method is based on vector similarity over dampened and discriminatively weighted term
frequencies. In our case, we chose the cosine similarity that has proven to be a robust metric for scoring
the similarity between two strings (Singhal, 2001). The basic idea behind cosine similarity is to transform
each string into a vector in some high dimensional space such that similar strings are close to each other.
The cosine of the angle between two vectors is a measure of how “similar” they are, which in turn, is a
measure of the similarity of these strings. If the vectors are of unit length, the cosine of the angle between
them is simply the dot product of the vectors. Thus, two attacks codes are more similar if they contain
many of the same terms with the same relative number of occurrences of each.

Having defined the similarity metric, we used it to compare consecutive attack codes per URL. Figure 15
shows the average similarity per URL. More than 83% of the inject codes targeting a particular URL are
more than 90% similar, and only 1.71% of the inject codes are very different (less than 50% similar). On
average, across all Zeus botnets and attackers, code similarity is over 90% from one attack to the next.
This suggests some mechanism of code sharing or stealing among the attackers.

20

90.00%

83.55%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

E ' 0.96% 0.41% 0.22% 0.39% 0.29% 0.40%
0.00% =

Qv O QO
L L L
& &

N
19
Q

Figure 15 - Average code similarity per URL

If we also take a look a particular URL per a particular botnet, we see that the similarity between
consecutive codes increases even more, reaching 97% in average (see Figure 16). A botnet attacking a
particular URL rarely changes the inject code between consecutive attacks.

The high similarity between consecutive attacks could be due to (i) incentives of attackers to not change
the code substantially if unnecessary, and (ii) operations related to essential characteristics of the
targeted URL.

100.00% 91 go%

90.00% =

80.00%
70.00%
60.00%
50.00%

40.00%

30.00% 5.08%

0.39%

20.00% 1.17%

10.00%
— 0.20% 0.20% 0.20% 0.39% 0.39% 0.20%

0.00%
QO QO Qv
o o L

EN N N N § \6\ \<(\ \6\ N

00‘5 5 g o 19 b‘zb ,,)L"’ o 15 sz"

[\ [\ (R Qv (\) Qv (\R QY

Figure 16 - Average code similarity per botnet and URL

Next, we analyze the impact of code length on similarity. In general, a clear trend does not appear
between the two. As Figure 17 shows, large codes are repeated less than small codes, but when repeated,
the inject code is more than 97% similar - though this partially reflects the size of the inject, of course. In

21

smaller injects, changing a few lines will drive down the similarity. In any case, consecutive code attacks
to the same URL are more than 90% similar in average no matter their length.

1
0.99
0.98 0
0.97
0.96

0.95

average cosine similarity

0.94

0.93

0.92
1-10lines 11-100lines 101-1000 lines >1000 lines

Figure 17 - Average code similarity versus code length and repetition (size of the bubbles)

We took a closer look at the evolution of attack code for four URLs among the top attacked domains
(Figure 18). These URLs are from PayPal, HSBC, Bank of America, and Alliance Leicester. Besides the cosine
similarity, we also compare the number of different code lines between consecutive inject codes. Both
metrics follow the same pattern for all the URLs. As one would expect from the analysis so far, the inject
codes in most of the instances is the exact copy of their predecessors. However, we can observe that the
similarity metric drops at certain points in case of some URLs. These drops most probably reflect changes
in the domain’s webpage and defense measures by domain owners (financial service providers and other
industries) that forced the attackers to adapt their code. In either case, it can be seen that after each drop
in similarity, the next codes again become similar. Similarity drops vary in different levels for each of the
URLs, reflecting the amount of change. Among these examples, a particular PayPal URL suffers from the
most abrupt changes in the similarity metric, while the HSBC inject code’s similarity only drops below
65% one time, with most of the consecutive attacks remaining identical.

10 URL: http*://www.hsbc.co.uk/1/2*Avg. Code |lnES 26.0 1.0 YRL: https //www.paypal. com/*/webscr%md— account*Avg Code lines:9.0
. v T YW YTV WeYwY v Vv . R e vy
1 1 N 1) ! | . ! oot
T I 'ﬂh H M T I T T T T T E
o i b4 |+ Cosine R T fee Cosine
RN | \ ol b + -+ Diff pietmn i e, piff
N]; i \lﬂ‘&l ‘;',"m“l“ll [L
bt N 1 I iy i1 1 t
0.8 [Iy Lll ki £ 0.8 ‘|:1:‘1‘\:"l‘: 1 :: I|' l\ :
; : : gl b e
A- 3 t [|]
® % ¢ R \,:': '\Ilu:i E ‘l: i ! \:
B i
Zos6 "on 1256l o Ve
© P LL \‘l:‘L p 1 £y
= = i *
E E REAE ¥
ﬁ 0 :l L
o | [T
T 04} 1 © [[/
S g o4 i il
[Iy
[i
I (W]
L !
0.2} 1 o2l Py i
RS i
R EE I 1 PO
S J U L
wa®s s I
0.0 ‘ ! . ; . - ‘ ; ‘
0 .10 10 .30 .30 .0 00
203,29 10 10‘ 20 10 10 10 10 10 02 1002 5002 5030 5010 L0 10 Vb oV
ot ?e‘o N\a(SOV Rl \“\ PO “gep “oct o' 20 o 20 odlo ot 20 Xl 20 o 20 odlo oo 20 pov 20

22

URL: *5|tekey bankofamerica.com*Avg. Code lines:147.0
T v

URL: *.mybank.alliance-leicester.co.uk*Avg. Code lines:86.0

10 v —r ¥ 1.0 -
. 1
¢4 Cosine L \;‘,;‘ t ol wle s Cosine
+ -+ Diff $v -+ Diff
K 0.8}
y‘
‘I
2 f
= 0.6 —fg 0.6}
E E
» 5
[[
B o4t 18 04t
O O
0.2 0.2}
0.0 ()OXXX"). 0 2030 - 010 VY o S A oY A Yo obs v oo
10 o)) 1\)) \ V2 03 2030 903091+ 90) 90V > 0V > 90V 90l g0d > 90> 40V
\“\10 ‘«N’L N\a(w \“\10 20 a0 20 W2 20 No\f)—o e 0\ 120 ot 2> N 10651\6“10@‘,1“3 Rt ey 23 “20\“\1 00 2260 2

Figure 18 - Code similarity evolution for 4 URLs corresponding to the top attacked domains.

In sum, inject code is not updated with high frequency. This somewhat contradicts the anecdotal
descriptions from the industry of highly dynamic cat-and-mouse games with constant adaptations
between attackers and defenders. The attack activity observed in this period clearly shows that copies of
a previous used inject code and also inject code that only marginally differs from previous ones are
present in most configuration files.

In addition, if we take a closer look to the inject code similarity between botnets with different lifetime
against targets in each persistence group (Table 8), we realize that in most of the cases code similarity
increases in line with botnet lifetime, i.e., botnets that are active longer tend to have smaller code changes.
It is unclear what this means exactly. If we assume that more rapid code evolution is a sign of attacker
competencies, then this finding provides evidence against our earlier hypothesis that the longer-lived
botnets are run by the more competent criminals. An alternative interpretation, however, is that these
attackers write more robust code that requires fewer changes to stay functional.

Table 8 - Cross table of similarity of inject code of botnets with different lifetime in different attack persistency
categories (O<code similarity<1)

Attack Persistency

Briefly attacked Occasionally attacked | Often attacked Always attacked

Botnet lifetime 1 | Code Similarity 0.893 0.897 0.951 0.926
Botnet lifetime 2 = Code Similarity | 0.959 0.968 0.970 0.968
Botnet lifetime 3 | Code Similarity | 0.965 0.970 0.968 0.969
Botnet lifetime 4 = Code Similarity | 0.966 0.973 0.971 0.972

In general, the overall pattern of high code reuse indicates that financial providers are not implementing
changes that require rapid adaptation on the side of the attackers. The lack of code development also
suggests that the cost for continuing these attacks is limited. Less skilled attackers could enter the market
and survive on minor modifications of existing inject code. That we haven’t seen an increase in the
volume of attacks is further evidence for the earlier finding that low entry barriers to the criminal market
do not translate into attack volume.

23

9 Conclusion

Financial malware on home computers and mobile devices causes millions of Euro in damages each year.
Not every financial service provider is equally popular among cybercriminals. Why are some financial
service providers targeted more often than others? There is very little comparative empirical research
across providers and countries identifying the factors that contribute to the selection of financial service
providers as targets.

This paper set out to explore the incentives and strategies of attackers from the instructions - contained
in configuration files - sent to the machines that were infected with Zeus malware from 2009-2013Q1,
during which period it was one of the dominant financial malware families. We investigated around
11,000 configuration files targeting 1.2 million URLs, which consisted of 14,870 unique URLs on 2,412
unique domains. We identified the attacked domains, which include financial services as well as other
targets, and developed metrics to rank their relative attractiveness as a target, taking into account how
criminals update the instructions for the bots under their control.

The attacks were concentrated: around 15% of the domains attracted 90% of the attacks. The
concentration is not driven just by target size. Using financial data from FDIC and traffic rankings from
Alexa as proxies for the size of the payment service provider, we observe that size is a threshold for
getting attacked, but does not predict the intensity of attack.

Attack persistency varies widely, with around half of the domains targeted briefly (4 weeks or less), and
88 domains targeted during the whole period (216 weeks). We believe the brief attacks are part of a
process of trial-and-error of attackers seeking new targets. Looking into it from the perspective of
botnets, we realized that long-lived botnets are more probable to attack domains is this category
comparing to the short-lived ones, which again supports the idea of trial-and-error.

Surprisingly enough, even though new domains are being tried over the whole period, there seems to be a
ceiling in the overall number of domains being attacked simultaneously. This suggests bottlenecks
elsewhere in the criminal value chain, for example, in the recruitment of money mules or in the
involvement of the attackers in other stages of the attack (e.g., the need to take over banking sessions in
real time). Despite what is expected, the ceiling remained in place both in terms of number of domains
that were attacked and in terms of number of new botnets that entered the market even after when Zeus
source code was leaked and became widely available. This suggests that in this market, low entry barriers
do not translate into more crime.

We also studied the evolution of inject code over time. Using a cosine similarity metric, we compared the
1.2 million inject codes in the dataset. In short, the vast majority of the inject codes were merely
modifications of previous codes. In fact, only 3,664 attacks were not exact copies of a previously seen
code. In any case, consecutive code attacks to a same URL are more than 90% similar regardless of the
length of the attack code. This suggests that attacks are much less dynamic than often presumed.

Code gets re-used to a remarkable degree: just 1% of the inject code is never repeated, and 226 different
inject codes are repeated over one thousand times without any modifications. On average, across all Zeus
botnets, code similarity is well over 90% from one attack to the next. This suggests some mechanism of
code sharing or stealing. Within a same botnet, similarity goes up to 97%. Overall, it seems that cost of
code development for attackers is limited. This could lower entry barriers and increase attacks, but as we
found earlier, this does not occur. Entry barriers are not the factor that is keeping attack levels in check.

At a more general level, the implication of these findings might be that the underground markets for
infected machines, malware-as-a-service, which have been portrayed as making attacks cheaper to
execute and even as opening up cybercrime to the unschooled masses, are not main force in driving the
attack volume, nor the selection of targets. This suggests that there is a need for more investigation on
other parts of online banking fraud value chain such as money mules, or banks’ money transferring
policies. If the bottlenecks are not in the malware ecosystem, then investing in disrupting the ecosystem
by defenders and law enforcement may not actually be the best allocation of scare resources.

24

References

[1].
[2].
[3].

[4].
[5].

[6].

[7].
[8].

[9].

[10].
[11].
[12].
[13].
[14].
[15].
[16].
[171.
[18].
[191.
[20].
[21].

[22].

[23].

[24].

[25].

Adham, Manal, Azodi, Amir, Desmedt, Yvo, & Karaolis, Ioannis. (2013). How to Attack Two-Factor
Authentication Internet Banking. In A.-R. Sadeghi (Ed.), Financial Cryptography and Data Security
(pp. 322-328): Springer Berlin Heidelberg.

Alexa Internet. (2014). Alexa - the Web Information Company. from http://www.alexa.com

Anderson, Ross, Barton, Chris, Béhme, Rainer, et al. (2013). Measuring the Cost of Cybercrime. The
Economics of Information Security and Privacy, 265-300.

Baylor, Ken. (2014). The Cutting Edge Is Honed: NSSLabs.

Bikhchandani, Sushil, Hirshleifer, David, & Welch, Ivo. (1992). A Theory of Fads, Fashion, Custom,
and Cultural Change as Informational Cascades. Journal of Political Economy, 100, 992-1026.
Christin, Nicolas, Yanagihara, Sally S, & Kamataki, Keisuke. (2010). Dissecting One Click Frauds.
Paper presented at the Proceedings of the 17th ACM conference on Computer and communications
security.

Claessens, Joris, Dem, Valentin, De Cock, Danny, Preneel, Bart, & Vandewalle, Joos. (2002). On the
Security of Today’s Online Electronic Banking Systems. Computers & Security, 21, 253-265.

Cranor, Lorrie Faith, Idouchi, Kelly, Leon, Pedro Giovanni, Sleeper, Manya, & Blase, Ur. (2013, June
2013). Are They Actually Any Different? Comparing Thousands of Financial Institutions’ Privacy
Practices.

Domingues Boscovich, Richard. (2012). Microsoft and Financial Services Industry Leaders Target
Cybercriminal Operations from Zeus Botnets. The Official Microsoft Blog - TechNet Blogs. from
http://blogs.technet.com/b/microsoft blog/archive/2012/03/25/microsoft-and-financial-services-
industry-leaders-target-cybercriminal-operations-from-zeus-botnets.aspx

European Central Bank. (2014). "Third Report on Card Fraud". Available from European Central
Bank. Frankfurt. http://www.ecb.europa.eu/press/pr/date/2014/html/pr140225.en.html

F-Secure. (2012). Threat Report H1 2012., from

https://http://www.f- secure.com/static/doc/labs_global/Research/Threat Report H2 2012.pdf.
Falliere, Nicolas, & Chien, Erin. (2009). Zeus: King of the Bots | Intellectual Takeout (Ito). from
http://www.intellectualtakeout.org/library/research-analysis-reports/zeus-king-bots

FDIC. (2014). Federal Deposit Insurance Corporation: Institution Directory.

from http://www2.fdic.gov/idasp/main.asp

FFA UK. (2013). "Fraud the Facts 2013". Available from Financial Fraud Action UK. London.
http://www.financialfraudaction.org.uk/.

Floréncio, Dinei, & Herley, Cormac. (2013). Where Do All the Attacks Go? In B. Schneier (Ed.),
Economics of Information Security and Privacy Iii (pp. 13-33): Springer New York.

Garg, Vaibhav, & Camp, L Jean. (2013). Macroeconomic Analysis of Malware. Paper presented at the
20th Annual Network and Distributed System Security Symposium, San Diego, California, USA.
Hoad, Timothy C., & Zobel, Justin. (2003). Methods for Identifying Versioned and Plagiarized
Documents. J. Am. Soc. Inf. Sci. Technol., 54,203-215.

Hunt, James Wayne, & Mcllroy, M Douglas. (1976). An Algorithm for Differential File Comparison:
Bell Laboratories.

Jaleshgari, Ramin P. (1999). Document Trading Online. InformationWeek, 755, 136.

Karnik, Abhishek, Goswami, Suchandra, & Guha, Ratan. (2007). Detecting Obfuscated Viruses Using
Cosine Similarity Analysis. Paper presented at the Modelling & Simulation, 2007. AMS'07. First Asia
International Conference on.

Krebs, Brian. (2011). Something Old Is New Again: Mac Rats, Crimepacks, Sunspots & Zeus Leaks.
from http://krebsonsecurity.com/2011/05/something-old-is-new-again-mac-rats-crimepacks-sunspots-
zeus-leaks/

Krebs, Brian. (2012). Thieves Replacing Money Mules with Prepaid Cards? — Krebs on Security.
Retrieved from http://krebsonsecurity.com/2012/04/thieves-replacing-money-mules-with-prepaid-
cards/

Kruse, Peter. (2011). Csis: Complete Zeus Sourcecode Has Been Leaked to the Masses. from
https://http://www.csis.dk/en/csis/blog/3229/

Levchenko, Kirill, Pitsillidis, Andreas, Chachra, Neha, et al. (2011). Click Trajectories: End-to-End
Analysis of the Spam Value Chain. Paper presented at the Security and Privacy (SP), 2011 IEEE
Symposium on.

Li, Shujun, Sadeghi, Ahmad-Reza, Heisrath, S6ren, Schmitz, Roland, & Ahmad, Junaid Jameel. (2012,
2012). Hpin/Htan: A Lightweight and Low-Cost E-Banking Solution against Untrusted Computers

25

[26]. Macdonald, Doug. (2011). Zeus, God of Diy Botnets. FortiGuard Center.
from http://www.fortiguard.com/legacy/analysis/zeusanalysis.html

[27]. MaxMind. (2014). Geoip | Ip Address Location Database.
from http://www.maxmind.com/en/geolocation landing

[28]. Mitropoulos, Dimitris, Karakoidas, Vassilios, Louridas, Panagiotis, & Spinellis, Diomidis. (2011).
Countering Code Injection Attacks: A Unified Approach. Information Management and Computer
Security, 19, 177-194.

[29]. Moore, Tyler, & Clayton, Richard. (2007, 2007). Examining the Impact of Website Take-Down on
Phishing.

[30]. Murdoch, Steven J., & Anderson, Ross. (2010). Verified by Visa and Mastercard Securecode: Or, How
Not to Design Authentication. Financial Cryptography and Data Security, 336-342.

[31]. Murdoch, Steven J., Drimer, S., Anderson, R., & Bond, M. (2010). Chip and Pin Is Broken. Paper
presented at the 2010 IEEE Symposium on Security and Privacy (SP).

[32]. NVB. (2013). "Scherpe Daling Fraude Internetbankieren". Available from Nederlandse Vereniging van
Banken.
from http://www.nvb.nl/nieuws/2013/1812/scherpe-daling-fraude-internetbankieren.html?cookie=set

[33]. ODP- Open Directory Project. (2014). from http://www.dmoz.org

[34]. OSCP. (2013). "Rapport Annuel 2012". Available from Observatoire de la sécurité des cartes de
paiement.Paris. http://www.banque-france.fr/observatoire/telechar/2013/Rapport-annuel-2012.pdf.

[35]. Premchaiswadi, Nucharee, Williams, James G., & Premchaiswadi, Wichian. (2009, October 2009). 4
Study of an on-Line Credit Card Payment Processing and Fraud Prevention for E-Business.

[36]. Rashid, Fahmida Y. (2011). Zeus Source Code Leak Means Even More Banking Malware to Hit the
Web. from http://www.eweek.com/c/a/Security/Zeus-Source-Code-Leak-Means-Even-More-Banking-
Malware-to-Hit-the-Web-253343/

[37]. RSA FraudAction Research Labs. (2011). Fraud News Flash — the Downfall of the Mighty — Zeus
Trojan’s Source Code Leaked and Now Available Everywhere. The RSA Blog and Podcast. from
https://blogs.rsa.com/fraud-news-flash-—the-downfall-of-the-mighty-—zeus-trojan’s-source-code-
leaked-and-now-available-everywhere/

[38]. Shahzad, R.K., & Lavesson, N. (2012, August 2012). Veto-Based Malware Detection. Paper presented
at the 2012 Seventh International Conference on Availability, Reliability and Security (ARES).

[39]. Sherstobitoff, ~Ryan. (2013). Inside the World of the Citadel Trojan. from
http://www.mcafee.com/uk/resources/white-papers/wp-citadel-trojan.pdf

[40]. Singhal, Amit. (2001). Modern Information Retrieval: A Brief Overview. Bulletin of the IEEE
Computer Society technical committee on data engineering, 24,2001.

[41]. Suebsing, Anirut, & Hiransakolwong, Nualsawat. (2009). Feature Selection Using Euclidean Distance
and Cosine Similarity for Intrusion Detection Model. Paper presented at the Intelligent Information and
Database Systems, 2009. ACIIDS 2009. First Asian Conference on.

[42]. Sullivan, Richard J. (2010). The Changing Nature of U.S. Card Payment Fraud: Industry and Public
Policy Options. Economic Review, 101-133.

[43]. TrendMicro. (2012). Security Threats to Business, the Digital Lifestyle, and the Cloud. from
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/spotlight-articles/sp-trend-
micro-predictions-for-2013-and-beyond.pdf

[44]. Utakrit, Nattakant. (2009, 2009). Review of Browser Extensions, a Man-in-the-Browser Phishing
Techniques Targeting Bank Customers.

[45]. van Eeten, Michel, Bauer, Johannes M, Asghari, Hadi, Tabatabaie, Shirin, & Rand, Dave. (2010). The
Role of Internet Service Providers in Botnet Mitigation: An Empirical Analysis Based on Spam Data:
OECD Publishing.

[46]. Wyke, James. (2011). What Is Zeus?
from http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/what-is-zeus.aspx

[47]. Yar, Majid. (2005). The Novelty of ‘Cybercrime’ an Assessment in Light of Routine Activity Theory.
European Journal of Criminology, 2, 407-427.

26

